Mechatronischer H2-Druckregler

Mechatronischer H2-Druckregler

Bislang ist das italienische Unternehmen Landi Renzo vornehmlich für seine Umrüstsätze für Gasmotoren bekannt. Jetzt stößt der weltweit mehr als 1.200 Mitarbeiter beschäftigende Automobilzulieferer in den Wasserstoffsektor vor und entwickelt einen fortschrittlichen elektronischen Druckregler für mittelschwere und schwere Nutzfahrzeuge, die mit H2-Verbrennungsmotoren betrieben werden.

Um in Zukunft nicht nur Komponenten für Erdgas, Biomethan oder Flüssiggas anbieten zu können, hat sich das in Cavriago ansässige Unternehmen mit dem deutschen Konzern Bosch zusammengetan. Sein erklärtes Ziel ist, noch 2024 wasserstoffbasierte Kraftstoffsysteme mit mechatronischen Druckreglern der nächsten Generation zu produzieren und zu vermarkten. Auf diese Weise will Landi Renzo einen kohlenstoffneutralen Betrieb von Nutzfahrzeugen möglich machen und so zur zunehmenden Dekarbonisierung des Mobilitäts- und Transportsektors beitragen.

Damiano Micelli, Leiter der Technologie-Abteilung, erklärte: „Dieser mechatronische Wasserstoffdruckregler ist ein wichtiger Meilenstein des technologischen Fortschritts, den wir dem sich schnell entwickelnden Mobilitäts- und Transportmarkt anbieten können. […] Dies ist eine hochinnovative Lösung, die in Kürze für mittlere und schwere Anwendungen verfügbar sein wird.“

Druckregler gelten als das Herzstück von Umrüst-Kits, weil sie teils große Druckunterschiede ausgleichen und gegebenenfalls auch den Aggregatzustand des jeweiligen Kraftstoffs verändern. Laut Landi Renzo reichte bisher „ein einfacher und robuster mechanischer Regler“ aus, um diese Funktion zu erfüllen. Mechatronische Druckregler wie der EM-H sorgen darüber hinaus für eine Steuerung und Kalibrierung des Wasserstoffförderdrucks entsprechend den Anforderungen des Fahrzeugs. In zwei Stufen wird der Eingangsdruck zunächst mechanisch von hoch auf mittel und dann vollelektronisch auf den Zielwert reduziert.

Landi Renzo verfügt über 70 Jahre Erfahrung in der Automobil- bzw. Energiebranche und besitzt unter anderem ein eigenes H2-Exzellenzzentrum in Bologna mit einem gut ausgestatteten, modularen Reinraum der Klasse 8

Aufbau einer metrologischen Infrastruktur

Aufbau einer metrologischen Infrastruktur

Durchflussmessung von Hochdruckgas- und Flüssigwasserstoff

Im Bereich der Durchflussmesstechnik ist der Einsatz von Wasserstoff, insbesondere von regenerativ erzeugtem Wasserstoff, als Prozessgas und Energieträger in vielen Anwendungen in den Fokus gerückt. Aufgrund der Notwendigkeit, Speicherkapazitäten effizient zu nutzen, muss Wasserstoff unter hohem Druck oder in flüssiger Form gespeichert werden. Forschungs- und Entwicklungsbedarf besteht bei der messtechnisch abgesicherten Mengenmessung für den Nieder- bis Hochdruckbereich von gasförmigem und verflüssigtem Wasserstoff. Darüber hinaus müssen entsprechende Rückführungsketten auf das SI-System für den weiten Bereich von Betriebsbedingungen aufgebaut werden, um valide Aussagen über die Messgenauigkeit und Stabilität der eingesetzten Durchflussmessgeräte treffen zu können. Das EMPIR-Projekt 20IND11 MetHyInfra adressiert diese Herausforderungen durch die Bereitstellung verlässlicher Daten, messtechnischer Infrastruktur, validierter Verfahren und normativer Beiträge.

Kritische Venturidüsen (Critical Flow Venturi Nozzles, CFVNs) sind heute weit verbreitet und stellen eine standardisierte und anerkannte Methode zur Durchflussmessung dar. Die wichtigsten Details bezüglich Form und Messmodell sind in der Norm ISO 9300 festgelegt. CFVNs werden im eichpflichtigen Verkehr eingesetzt und gelten als zuverlässige Normale mit hoher Langzeitstabilität. Die kostengünstigen und wartungsarmen CFVNs liefern bei gut definierter Geometrie stabile, reproduzierbare Messergebnisse und sind nur vom verwendeten Gas abhängig. Die Norm ISO 9300 beschreibt zwei Düsenformen, die zylindrische und die toroidale Form. In der Realität weichen die nach dieser Norm gefertigten Düsenkonturen jedoch von diesen Idealformen ab. In den meisten Fällen liegen die realen Formen zwischen den beiden Idealformen.

Die erreichbare Messunsicherheit wird auch durch die Qualität der Modelle der thermophysikalischen Eigenschaften der zu messenden Gase begrenzt. Die aktuelle Referenzgleichung (Equation of State, EoS) für normalen Wasserstoff (n-H2) wurde von Leachman et al. entwickelt [1]. Da für n-H2 nur begrenzte thermodynamische Messdaten mit vergleichsweise hohen Messunsicherheiten vorliegen, sind die Unsicherheiten für die verschiedenen Eigenschaften im Allgemeinen um eine Größenordnung höher als bei anderen Gasen.

Daher wurden in diesem Projekt neue Schallgeschwindigkeitsmessungen (speed of sound, SoS) bei Temperaturen von 273 bis 323 K und Drücken bis 100 MPa durchgeführt. Die gewonnenen Daten wurden anschließend zur Entwicklung einer neuen, für Gasphasenberechnungen optimierten EoS für n-H2 verwendet [2]. Durch die Messungen konnten die Unsicherheiten der aus der EoS berechneten SoS im untersuchten Temperatur- und Druckbereich deutlich reduziert werden.

Im Projekt wurden umfangreiche Computational-Fluid-Dynamics-Simulationen (CFD-Simulationen) durchgeführt, um weitere Erkenntnisse über die Strömungsphysik in der Düse zu gewinnen. Zu diesem Zweck wurde in OpenFOAM ein numerisches Modell für Hochdruck-Wasserstoffströmungen in CFVN entwickelt, das verschiedene relevante Gaseffekte, wie zum Beispiel Kompressibilitätseffekte, Grenzschichteffekte, Übergangseffekte, berücksichtigt. Die erzielten Ergebnisse stimmen wesentlich besser mit den experimentellen Daten überein als bisher verfügbare Implementierungen.

Um das Strömungsverhalten nicht idealer Düsenkonturen bewerten und vergleichen zu können, wurden zusätzlich CFD-Simulationen für die in diesem Projekt experimentell untersuchten idealen Düsen sowie für parametrisierte Düsen durchgeführt. Der Durchflusskoeffizient dieser nicht idealen Düsen kann mit Hilfe der vorgeschlagenen Düsenformcharakterisierung sehr gut vorhergesagt werden. Die im Projekt entwickelten Implementierungen sind frei verfügbar [3].


Abb. 2: Mobiles HRS-Durchflussnormal

Da derzeit keine Prüfeinrichtung mit rückführbaren Standards zur Verfügung steht, mit der CFVNs direkt mit Hochdruckwasserstoff kalibriert werden können, musste eine alternative Methode entwickelt werden. Das gewählte Vorgehen ist, ein Coriolis Flow Meter (CFM) unter Hochdruckbedingungen (Bereich 10 MPa bis 90 MPa) mit einem gravimetrischen Primärnormal rückführbar zu kalibrieren, um es später als Referenzmessgerät für die Düsenkalibrierung verwenden zu können.

Für die Kalibrierung des Referenzmessgeräts wurde die H2-Versuchstankstelle (Hydrogen Refueling Station, HRS) des Zentrums für BrennstoffzellenTechnik (ZBT) in Duisburg ausgewählt. Für die Messungen wurde ein Rheonik RHM04 CFM als Referenzmessgerät in der „warmen Zone“ der HRS installiert, das heißt vor dem Wärmetauscher und dem Druckregelventil. In diesem Bereich ist die Temperatur stets nahe der Umgebungstemperatur und der Druck konstant hoch, typischerweise um 90 MPa. Für die Kalibrierung wurde ein mobiles HRS-Durchflussnormal verwendet, das direkt an die HRS angeschlossen wurde und somit den Platz eines Fahrzeugs einnahm.

Im letzten Schritt sollen die Ergebnisse der CFVN-Messkampagne mit denen der CFD-Simulationen verglichen werden. Dabei werden die neu entwickelten EoS sowohl in der Messkampagne als auch in den CFD-Simulationen eingesetzt, um beide Ergebnisse bestmöglich vergleichen zu können.

Messverfahren für flüssigen Wasserstoff

Neben gasförmigem Wasserstoff liegt ein Schwerpunkt des Projekts auf verflüssigtem Wasserstoff (LH2). Es gibt gegenwärtig noch keine Primär- oder Transfernormale für die Messung von LH2. Die mit der Verwendung eines Durchflusssensors für die Durchflussmessung von LH2 verbundene Unsicherheit ist unbekannt und nicht quantifiziert, da es keine direkte Rückführbarkeit auf Kalibrierungen mit LH2 als Kalibrierflüssigkeit gibt. Das Fehlen von Kalibriereinrichtungen bedeutet, dass Zähler, die mit LH2 verwendet werden, mit alternativen Flüssigkeiten wie Wasser, verflüssigtem Stickstoff (liquid nitrogen, LN2) oder Flüssigerdgas (liquefied natural gas, LNG) kalibriert werden müssen.

Im Rahmen des Projekts wurden daher drei Ansätze entwickelt, die auf völlig unabhängigen Rückführungsketten für die Messung von LH2-Durchflüssen basieren. Die ersten beiden Ansätze sind auf Durchflüsse beim Be- und Entladen von LH2-Tankwagen anwendbar (Durchflüsse bis zu 3.000 kg/h für einen Messquerschnitt DN25 bei Drücken bis etwa 1 MPa), der dritte auf kleinere Durchflüsse (4 kg/h für einen Messquerschnitt DN3 bei Drücken bis etwa 0,2 MPa).

Der erste Ansatz basiert auf der Bewertung der Übertragbarkeit von Wasser- und LNG-Kalibrierungen auf LH2-Bedingungen. Die Studie identifiziert und analysiert potenzielle Unsicherheitsbeiträge für kryogene CFMs. Die experimentelle und theoretische Analyse soll als Grundlage für Richtlinien für die Konstruktion und Auswahl von CFMs dienen, die für SI-rückführbare LH2-Durchflussmessungen geeignet sind. CFMs sind eine anerkannte Technologie für die direkte Messung des Massendurchflusses und der Dichte von Flüssigkeiten und werden typischerweise im kryogenen eichpflichtigen Verkehr für Transportkraftstoffanwendungen eingesetzt.

Die Literaturrecherche identifizierte mehrere Temperaturkorrekturmodelle, die auf LH2-Durchflüsse anwendbar sind, das heißt, wie die LH2-Durchflussmessung aufgrund von Temperatureffekten, die die CFM-Messung beeinflussen, korrigiert werden sollte. Numerische Finite-Elemente-Methoden (FEM) für U-förmige, bogenförmige und gerade Rohrkonstruktionen wurden verwendet, um die Temperaturempfindlichkeit von CFMs für die Messung von LH2-Durchflüssen vorherzusagen [4]. Schließlich können mit Hilfe der FEM auch Abschätzungen der erreichbaren Messunsicherheit unter Verwendung des aktuellen Stands der Technik für die LH2-Durchflussmessung durchgeführt werden.

Der zweite Ansatz basiert auf der kryogenen Laser Doppler Velocimetry (LDV) und wird als “Référence en Débitmétrie Cryogénique Laser“ (RDCL) bezeichnet. Die Rückführbarkeit wird durch Geschwindigkeitsmessungen gewährleistet, und es kann entweder als Primärnormal oder als Sekundärnormal für Durchflussmessungen von flüssigem Wasserstoff verwendet werden. Seine In-situ-Kalibrierunsicherheit in kryogenen Strömungen (d. h. Flüssigstickstoff, Flüssigerdgas) wurde auf 0,6 % (k = 2) geschätzt [5]. Da das RDCL in jeder Flüssiggasanlage installiert werden kann, hat es den Vorteil, dass eine repräsentative Kalibrierung unter Prozessbedingungen direkt in der Anlage durchgeführt werden kann.


Abb. 3: LDV-Standard für rückführbare kryogene Durchflussmessung

Der dritte Ansatz wird als Verdampfungsmethode bezeichnet. Die Rückführbarkeit auf SI-Einheiten wird in der Gasphase durch kalibrierte Laminar-Flow-Elemente (LFE) gewährleistet, nachdem das verflüssigte Gas verdampft wurde. Die LFE sind auf die Physikalisch-Technische Bundesanstalt (PTB) rückführbar. Wie beim ersten Ansatz muss die Übertragbarkeit alternativer Flüssigkeitskalibrierungen mit Wasser, LN2 und verflüssigtem Helium (LHe) bewertet werden, da die Kalibrierbank aus Sicherheitsgründen nicht für die direkte Verwendung von LH2 geeignet ist. Der kleinere Durchflussbereich und die Tatsache, dass nichtexplosive Gase verwendet werden, sind operationelle Vorteile der Verdampfungsmethode. Ein weiterer Vorteil ist die Verwendung von LHe (Siedepunkt bei etwa 4 K), so dass die Unsicherheit der alternativen Flüssigkeitskalibrierung auf Interpolation und nicht auf Extrapolation beruht.

Ein wichtiger Aspekt, der bei der Verdampfungsmethode berücksichtigt werden muss, ist die Umwandlung von Para-Wasserstoff in normalen Wasserstoff, die von Günz ausführlich untersucht wurde [6]. Bei tiefen Temperaturen liegt fast ausschließlich Para-Wasserstoff vor, bei Raumtemperatur ändert sich das Verhältnis auf 25 % Para- und 75 % Ortho-Wasserstoff (n-Wasserstoff). Para- und Ortho-Wasserstoff unterscheiden sich deutlich in bestimmten physikalischen Eigenschaften wie Wärmeleitfähigkeit, Wärmekapazität oder SoS. Diese können die Gasdurchflussmessung je nach Messprinzip des Durchflusssensors stark beeinflussen. LFEs, die zur Messung des Gasdurchflusses bei Umgebungsbedingungen eingesetzt werden, sind davon nicht betroffen, da Dichte und Viskosität, insbesondere im hier interessierenden Temperaturbereich, vernachlässigbare Unterschiede aufweisen.

Zusammenfassend kann gesagt werden, dass die Projektergebnisse das Vertrauen der Endnutzer und Verbraucher stärken werden. Die vorgestellten Methoden gewährleisten verlässliche Daten von Messungen, was für die Erhöhung des Wasserstoffanteils am Gesamtenergieverbrauch wichtig ist.

This project (20IND11 MetHyInfra) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Literatur

[1] Leachman, J. W.; Jacobsen, R. T.; Penoncello, S. G.; Lemmon, E. W.: Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen, J. Phys. Chem. Ref. Data 38(3): 721-748 (2009) https://doi.org/10.1063/1.3160306

[2] Nguyen T-T-G, Wedler C, Pohl S, Penn D, Span R, Trusler JPM, Thol M. Experimental Speed-of-Sound Data and a Fundamental Equation of State for Normal Hydrogen Optimized for Flow Measurements. Unter Begutachtung in International Journal of Hydrogen Energy, 2024.

[3] Weiss, S. (2023). Dataset of publication „Derivation and validation of a reference data-based real gas model for hydrogen“ (V1.0) [Data set]. https://doi.org/10.5281/zenodo.10074998

[4] M.D. Schakel, F. Gugole, D. Standiford, J. Kutin, G. Bobovnik, N. Mole, R. Maury, D. Schumann, R. Kramer, C. Guenz, H.-B. Böckler, O. Büker, „Establish traceability for liquefied hydrogen flow measurements”, FLOMEKO, Chongqing, 2022

[5] Maury, R., Strzelecki, A., Auclercq, C., Lehot, Y., Loubat, S., Chevalier, J., Ben Rayana, F., Olsen, Å. A. F., Chupin, G., “Cryogenic flow rate measurement with a laser Doppler velocimetry standard,” Measurement Science and Technology, vol. 29, no. 3, p. 034009, 2018 https://doi.org/10.1088/1361-6501/aa9dd1

[6] C. Günz, “Good practice guide to ensure complete conversion from para to normal hydrogen of vaporized liquified hydrogen”, https://doi.org/10.7795/110.20221115

Autoren: Oliver Büker, RISE Research Institutes of Sweden, Borås, Sweden, Benjamin Böckler, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig

FRHY-Stack, der Erste seiner Art!

FRHY-Stack, der Erste seiner Art!

Technologieplattform für hochratenfähige Elektrolyseurproduktion

Das Verbundprojekt FRHY im Wasserstoff-Leitprojekt H2Giga zielt auf die Hochskalierung der Elektrolyseurproduktion ab. Damit die Entwicklung der erforderlichen Technologielösungen gelingt, wurde der FRHY-Stack als Referenz geschaffen: ein Elektrolyseur mit hohem Wirkungsgrad und dem Potenzial für eine industrielle Massenfertigung, der zudem den Wissens- und Technologietransfer unterstützt.

Die insgesamt zehn Zellen des FRHY-Stacks bestehen jeweils aus zwei umgeformten und gefügten Blechplatten, den sogenannten Bipolarplatten (BPP). Diese beiden Halbplatten werden auf einer am Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (IWU) neu entwickelten Anlage zunächst mit hoher Geschwindigkeit prägend gewalzt. Anschließend werden sie in einem hinsichtlich der Prozessgeschwindigkeit angepassten Fügeverfahren miteinander verschweißt.

FRHY – der Referenzstack
Eine weitere wesentliche Komponente ist die Protonen-Austausch-Membran (MEA). Diese wird in einem neuartigen lnkjet-Druckverfahren (Fraunhofer ENAS) hergestellt. BPP und MEA sind in einen stabilen Folienrahmen, das Subgasket, eingebettet und werden durch verschiedene Dichtungen und die porösen PTL/GDL-Matten (engl. Porous Transport Layer bzw. Gas Diffusion Layer) ergänzt. Somit entsteht ein auf industrielle Massenfertigung ausgelegtes Zelldesign.

Die Zu- und Abführung der Medien Wasser beziehungsweise Wasserstoff am Stack – dem Stapel mehrerer Zellen – erfolgt durch Kanäle am Rand jeder Zelle. Die beiden vergoldeten Kontaktplatten am Stapelende versorgen den Stack mit Energie.

Der FRHY-Referenz-Stack ist für verschiedene Nutzungsszenarien geeignet und verfügt über einen hohen Wirkungsgrad. Damit stellt die Referenzfabrik.H2 erstmals eine Basis zur Verfügung, die es einer Vielzahl von Branchen beziehungsweise Unternehmen ermöglicht, einzelne Komponenten technologisch und wirtschaftlich zu bewerten, ihr individuelles Geschäftsmodell zu entwickeln und sich in der Lieferkette zu platzieren.

       
Abb. 1: FRHY-Referenz-Stac                                                                             Parameter
Quelle: Referenzfabrik.H2

In der ersten Entwicklungsphase entstand der Design-Baukasten. Dieser definiert wesentliche Parameter für die Auslegung der Zell- beziehungsweise Stack-Komponenten und stellt verschiedene Ausführungen gegenüber. Dabei konnten zunächst zwei sehr funktionale Designs herausgearbeitet werden, die für die Fertigung von Zellen in hohen Stückzahlen infrage kommen. Die Variante M ist die Basis für den FRHY-Stack; das fertigungstechnische Potenzial beruht auf metallischen BPP.

Zusätzlich wurde eine Variante K entwickelt. Diese zeichnet sich durch einen neu geschaffenen, intelligenten Kunststoffrahmen aus, der automatisiert in großen Stückzahlen gefertigt werden kann. Auf der Grundlage dieser Designs stellten die Ingenieure Komponenten her und führen diese im FRHY-Stack zusammen.

Für die Entwicklung der nächsten, hochratenfähigen Generation von Elektrolyseuren steht somit ein wertvoller Bezugsrahmen zur Verfügung. Gerade Elektrolyseure im (preissensiblen) kW-Bereich sind ohne hochratenfähige Produktionsprozesse kaum markttauglich. Sind die Verkaufspreise hingegen attraktiv, entsteht allein durch den Energiespeicherbedarf in Windparks oder Wohnhäusern ein riesiger Markt. Auch für Anwendungsszenarien im Megawatt-Bereich wäre der Stack einsetzbar. Durch die Kopplung von Stacks ließen sich Anlagen für die Produktion großer Mengen an Wasserstoff realisieren, um beispielsweise das verarbeitende Gewerbe und die Grundstoff-Industrie zu versorgen.

Stoßrichtung des Verbundvorhabens FRHY
FRHY verfolgt einen technologieoffenen Ansatz zur Entwicklung neuer Module für eine hochskalierbare Elektrolyseurproduktion und deren digitale Zwillinge. Das Ziel ist, einen Baukasten der wesentlichen Produktionsschritte zu deren technologischer und wirtschaftlicher Bewertung zu schaffen und damit die Industrie bei der Auswahl der Fertigungsverfahren unter Berücksichtigung wichtiger Parameter, wie insbesondere Skalierbarkeit, Qualität und Kosten, zu unterstützen. So lassen sich Produktionsvarianten berechnen und mögliche Fertigungsstrategien, etwa hinsichtlich Automatisierung oder einer integrativen kontinuierlichen Prozessführung, analysieren. Damit können nicht nur Investitionskosten beziffert, sondern auch Return-on-Investment-Aussagen im Verhältnis zur geplanten Produktionsmenge abgeleitet werden.

Die FRHY-Methodik gestattet auch eine Vernetzung von Produktionslinien zu einem gesamten Wertschöpfungssystem. Dadurch wird Transparenz geschaffen und der Aufbau von Lieferketten unterstützt. Zudem erleichtert sie die Fabrikplanung und Entscheidungen über eine effektive Fertigungstiefe.

Produktions- und Prüfverfahren für Elektrolyseure verleiht der FRHY-Ansatz typübergreifend einen enormen Schub und sorgt für einen hohen Technologie-Reifegrad. Ein wesentlicher Schwerpunkt dabei ist, den Nachweis robuster und skalierbarer Prozesse zu erbringen. Davon wird auch die Qualität und Lebensdauer des Produkts profitieren: Stabile Prozesse sorgen zudem für eine wirtschaftliche Massenproduktion hochwertiger Elektrolyseure und sind die Grundlage kontinuierlicher Weiterentwicklung sowohl der Produktion als auch des Produkts.

H2Giga und FRHY
Mit dem Wasserstoff-Leitprojekt H2Giga unterstützt das Bundesministerium für Bildung und Forschung (BMBF) Deutschlands Einstieg in die Wasserstoffwirtschaft. In vier Jahren Laufzeit (bis März 2025) soll es vorhandene Hürden auf dem Weg zur serienmäßigen Herstellung großskaliger Wasserelektrolyseure überwinden. FRHY vereint die Fraunhofer-Institute IWU, ENAS, IPT, IPA, IMWS und IWES. Der dezentrale Aufbau ermöglicht es, regionale Partner und Netzwerke in Baden-Württemberg, Nordrhein-Westfalen und Mitteldeutschland einzubinden.

Potenziale
FRHY verknüpft physische und virtuelle Lösungen und sorgt so für einen enormen Innovationsimpact in der Elektrolyseurproduktion. Aus diesem Leitziel des Verbundvorhabens ergeben sich ehrgeizige Vorhaben, die den Weg in die Massenproduktion von Elektrolyseuren ebnen werden.

Die Entwicklung neuartiger, konfigurierbarer Produktions- und Prüfmodule für die Schlüsselprozessschritte der Stack-Herstellung wird die Fertigungskosten um mindestens 50 Prozent senken und die Produktqualität um 20 Prozent verbessern, bei einer erheblich verlängerten Lebensdauer der Elektrolyseur-Gesamtsysteme.

Die dabei zu lösenden Forschungsfragen umfassen vorrangig die Erweiterung der technologischen Grenzen der Elektrolyseurproduktion. Parallel dazu sind wissenschaftliche Impulse zur produktionsoptimierten „Next Generation“ der Elektrolyseure zu erwarten. FRHY, das Verbundprojekt in H2Giga, und insbesondere der FRHY-Stack haben dafür eine wesentliche Grundlage geschaffen.

Digital abgebildete Produktions- und Prüfmodule werden in einen Technologiebaukasten für die Stack-Produktion integriert. Dieser fasst die Resultate aus den physischen und digitalen Analysen zusammen. Dadurch lassen sich erstmals von der Industrie dringend benötigte quantifizierbare Aussagen zur Ausbringungsmenge, zu Kosten und zum Funktionsbereich in Abhängigkeit vom Fertigungsverfahren ableiten.

Chancen
Mit dem FRHY-Referenzstack wurde erstmals eine Lösung geschaffen, die die Basis für eine industrielle Massenfertigung von Elektrolyseurkomponenten darstellt. Nicht nur die konsequente Umsetzung von kontinuierlichen Rolle-zu-Rolle-Fertigungstechnologien führt zur Erhöhung der Produktionsmengen. Auch neue Verfahren, die bewusst auf den sparsamen Einsatz kritischer Materialien (z. B. Platin, Iridium, Titan) setzen, und In-situ-Prüftechnologien resultieren in einer substanziellen Senkung der Produktionskosten.

Entstanden sind eine echte Referenz und ein technologischer „Rohdiamant“, die für eine industrielle Umsetzung durch Unternehmen zur Verfügung stehen. Damit ist ein wichtiger Grundstein für die künftige Verfügbarkeit von Wasserstoffsystemen zu bezahlbaren Preisen gelegt – und letztlich für einen H2-Endpreis auf wirtschaftlich vertretbarem Niveau.


Abb. 2: Walzprägen von Bipolarplatten: Die Struktur der Bipolarplatte wird durch ein Walzenpaar geprägt. Hauptvorteil dieses Verfahrens ist die hohe Prozessgeschwindigkeit, die zu einer substanziellen Steigerung der Stückzahlausbringung, Skaleneffekten und schließlich zu einer deutlichen Reduktion der Kosten führt.

Die Referenzfabrik.H2
Die Gesamtkoordination für das Verbundprojekt FRHY liegt bei der Referenzfabrik.H2 des Fraunhofer IWU. Die Referenzfabrik.H2 hat sich das Ziel gesetzt, Schrittmacher für die industrielle Massenproduktion von Elektrolyseuren und Brennstoffzellen zu sein. Industrie und Wissenschaft verstehen sich dabei als Wertschöpfungsgemeinschaft, die gemeinsam am zügigen Hochlauf einer effizienten, stückzahlskalierbaren Produktion von Wasserstoffsystemen arbeitet.

Die Referenzfabrik.H2 basiert auf den Forschungs- und Entwicklungsprojekten des Fraunhofer IWU. Daraus entstandene Lösungen bieten die fertigungstechnische Grundstruktur. Hier bringen die Industrieunternehmen ihre Kernkompetenzen ein und entwickeln diese gemeinsam mit den beteiligten Fraunhofer-Instituten sowie anderen Industrieunternehmen weiter. Nur mit diesem engen Schulterschluss zwischen Wissenschaft und Industrie kann es gelingen, schneller leistungsstarke, kostengünstigere Systeme für den Masseneinsatz zu produzieren.

Autorin: Dr. Ulrike Beyer, Referenzfabrik.H2 am Fraunhofer IWU

 

HySupply – Deutsch-australische Wasserstoffbrücke

HySupply – Deutsch-australische Wasserstoffbrücke

acatech und BDI zeigen, was machbar ist

Das Energiesystem zu defossilisieren ist ein wichtiges Ziel der Energiewende – grünen Wasserstoff zu importieren eine mögliche Option dafür. Das Kooperationsprojekt HySupply von acatech und dem Bundesverband der deutschen Industrie (BDI) hat deshalb die Machbarkeit einer deutsch-australischen Wasserstoffbrücke geprüft. Das Ergebnis: Herstellung und Transport von Wasserstoff und Wasserstoff-Derivaten von Australien nach Deutschland sind technisch, ökonomisch und rechtlich möglich. Eine entscheidende Frage dabei: Wie könnten die Importe im Inland ökonomisch und technisch sinnvoll verteilt werden?

Energieimporte sind für die deutsche Energieversorgung eine feste Größe. Konzentrierten sie sich bisher größtenteils auf Energieträger fossilen Ursprungs wie Erdgas und Erdöl, könnten sie schon bald um einen alternativen Energieträger erweitert werden: grünen Wasserstoff. Nach dem in der Fortschreibung der Nationalen Wasserstoffstrategie enthaltenen Zielbild wird der Gesamtwasserstoffbedarf in Deutschland 2030 zwischen 95 und 130 TWh liegen und nur über Importe zu decken sein. Innerhalb der nächsten zehn Jahre könnte also australischer Wasserstoff eine Rolle im deutschen Energiesystem spielen. Aber warum kommt ausgerechnet das 14.000 Kilometer entfernt gelegene Australien dafür in Betracht?

Energieversorgung stabil und resilient gestalten
Alle Voraussetzungen sprechen dafür: Erneuerbare Energien zur Herstellung von grünem Wasserstoff sind in Australien reichlich vorhanden. Zudem sind hinsichtlich einer zukunftssicheren und verlässlichen Versorgung die Bedingungen ideal: „Eine australisch-deutsche Wasserstoffbrücke verspricht eine stabile und für beide Seiten vorteilhafte Handelsbeziehung zwischen zwei demokratischen Staaten“, erklärt acatech-Präsident Jan Wörner die Voraussetzungen. „Wir haben jetzt die Gelegenheit, den Zukunftsmarkt Wasserstoff mitzugestalten und unseren Innovationsstandort damit resilienter gegen Abhängigkeiten zu machen. Dafür brauchen wir einen entschlossenen, gemeinsamen Aufbau von Infrastrukturen und Rahmenbedingungen.“

Allerdings werde die Technologie zum Transport flüssigen Wasserstoffs voraussichtlich innerhalb der nächsten 20 Jahre nicht verfügbar sein, stellte Robert Schlögl kürzlich im Rahmen eines Interviews mit dem Deutschlandfunk fest. Er ist Präsident der Alexander von Humboldt-Stiftung und acatech-Mitglied. Als Co-Projektleiter hat er HySupply ab dessen Start im November 2020 begleitet. Diese und weitere Herausforderungen beim Transport flüssigen Wasserstoffs sind der Grund, weshalb sich die Machbarkeitsstudie HySupply mit den Importmöglichkeiten von H2-Derivaten beschäftigt, also Ammoniak, synthetischem Erdgas, Methanol, Fischer-Tropsch-Produkten und dem Trägermedium LOHC.

HySupply untersuchte von Ende 2020 bis Januar 2024, unter welchen technischen, ökonomischen und rechtlichen Voraussetzungen eine deutsch-australische Wasserstoffbrücke machbar ist. Durchgeführt wurde die vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Machbarkeitsstudie von acatech – Deutsche Akademie der Technikwissenschaften und dem Bundesverband der deutschen Industrie. Die University of New South Wales (UNSW) leitete das australische Konsortium. Gefördert wurde dieses vom Department of Foreign Affairs and Trade (DFAT). Zusammen haben beide Seiten ein einzigartiges Netzwerk aus Fachleuten aus Wissenschaft und Wirtschaft vereint, um die gesamte Wertschöpfungskette zu untersuchen.

Transport- und Versorgungsrouten

Bereits in der Vergangenheit haben sich Studien mit verschiedenen Schwerpunkten von Wasserstoffimporten beschäftigt. Das Besondere an der vorliegenden, für HySupply von der Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG erstellten Studie: Erstmals befasst sich eine Publikation explizit mit der letzten Meile, die die Infrastruktur meist vor die größten Herausforderungen stellt – technischer wie wirtschaftlicher Natur. Robert Schlögl erklärt dazu: „Die vorgelegte Studie analysiert, bewertet und vergleicht erstmals flächendeckend und umfassend alle wesentlichen Wasserstoffderivate und Transportoptionen, vom Importhub bis hin zum Endverbraucher.“

Insgesamt sind es 543 Nachfragestandorte in Deutschland, die in diese Analyse eingeflossen sind. Sie wurden den verschiedenen Anwendungsfällen zugeordnet und hinsichtlich der Versorgungsmöglichkeiten mit Wasserstoff und dessen Derivaten untersucht. Anwendungsfälle – das sind die Herstellung von Ammoniak, Stahl, petrochemischen Basischemikalien und synthetischen Flugturbinenkraftstoffen. Außerdem zählen die Bereitstellung von Prozesswärme in der Metallerzeugung und -bearbeitung, die Herstellung von Glas und Keramik sowie die Papierindustrie dazu. Als Transportwege berücksichtigt die Studie Binnenschifffahrtsstraßen, Schienennetz, Wasserstoffkernnetz und Produktpipelines. So listet die Studie je Anwendungsfall die ökonomischen Vor- und Nachteile der jeweiligen Optionen auf.


Abb. 2: Gesamtdarstellung des analysierten Versorgungsnetzes und Verteilung der Nachfragestandorte
Quelle: Fraunhofer IEG

Flexibilität entscheidet über den H2-Hochlauf
Das H2-Kernnetz spielt eine wichtige Rolle in der Versorgung der Industrie. Die Studie weist darauf hin, dass alle identifizierten Standorte potenzieller Wasserstoffgroßnachfrager im Jahr 2035 durch das Wasserstoffkernnetz erreicht werden. Aber: Der Transport von Wasserstoff (-derivaten) per Binnenschiff oder Bahn stellt in vielen Fällen eine mögliche Alternative oder Ergänzung zur pipelinegebundenen Standortversorgung dar.

Rund elf Prozent der Standorte liegen bei einer Nachfrage von über 500 Gigawattstunden Wasserstoffäquivalent (GWhHeq). Größtenteils handelt es sich hier um Anwendungen wie die Herstellung von Basischemikalien und Stahl und den Einsatz von Ammoniak und synthetischen Flugturbinenkraftstoffen. 85 Prozent der untersuchten 543 Nachfragestandorte beanspruchen hingegen eine jährliche Nachfrage von weniger als 150 GWhHeq. Für diese Fälle ist die empfohlene Alternative zur pipelinebasierten Belieferung der Versorgungsanschluss per Binnenschiff oder Bahn.

Abschlussstudie fokussiert das Jahr 2035
Die Nationale Wasserstoffstrategie sieht vor, bis zum Jahr 2032 ein über 9.000 Kilometer langes Wasserstoffkernnetz zu installieren. Es soll die großen Wasserstoff-Einspeiser mit allen großen Verbrauchern verbinden. Die erste Phase des Markthochlaufs bis 2035 erfordert, auf die wichtigsten logistischen Fragestellungen Antwortoptionen anbieten zu können. Das gilt insbesondere für die Verteiloptionen des importierten Wasserstoffs und der Wasserstoffderivate, die für den Markthochlauf benötigt werden. Die im Rahmen des Projektabschlusses von HySupply vorgestellte Abschlussstudie mit dem Titel „Wasserstoff Verteiloptionen 2035“ fokussiert daher genau auf diesen entscheidenden Zeitraum bis 2035 und gibt einen zusätzlichen Ausblick auf die folgenden zehn Jahre bis 2045.


Abb. 3: Kostenoptimale Versorgungsketten
Quelle: Fraunhofer IEG

Inländische Transportkosten nur geringer Kostenanteil

Zwischen 3.400 und 16.000 Euro pro Tonne Wasserstoffäquivalent (EUR/tH₂eq): So weit reicht die in der Studie angegebene Spanne der festgestellten Bereitstellungskosten zwischen den unterschiedlichen Use Cases. Dabei machen die Importkosten mit einem Bereich von 41 bis 100 Prozent den Großteil aus, wohingegen die Kosten für die inländische Weiterverteilung mit durchschnittlich fünf Prozent Kostenanteil vergleichsweise gering ausfallen. In die ökonomische Bewertung flossen die Kosten für die Bereitstellung von Wasserstoff und seinen Derivaten ein. Zusätzlich wurden die spezifischen Transport- und Umwandlungskosten mit einbezogen.


Abb. 4: Kostenmodell zur Bewertung der Versorgungsketten
Quelle: Fraunhofer IEG

Karen Pittel, acatech-Präsidiumsmitglied und Leiterin des ifo Zentrums für Energie, Klima und Ressourcen, spricht sich für Flexibilität in den Verteiloptionen aus: „Diese alternativen Verteiloptionen spielen eine wichtige Rolle bei der Versorgung der Standorte mit vergleichsweise geringem Bedarf. Sie bringen die nötige Flexibilität mit, um in der ersten Phase des Markthochlaufs schnell in die Umsetzung zu kommen. Um das gewährleisten zu können, sollten wir die Leistungsfähigkeit der alternativen Verteiloptionen sichern und ausbauen.“

Dennoch wird der konsequente Ausbau des Wasserstoffkernnetzes insbesondere für Standorte mit hoher Nachfrage eine zentrale Rolle spielen. Den parallelen Ausbau der verschiedenen Verteiloptionen sieht daher auch Robert Schlögl als essenziell notwendig an: „Die Fertigstellung des Wasserstoffkernnetzes muss energisch weiterverfolgt werden. Gleichzeitig müssen wir auch bei anderen Aufgaben, wie dem Ausbau des Bahnnetzes oder dem Aufbau von CO2-Infrastruktur, ins Umsetzen kommen.“


Abb. 5: Kategorien der modellierten Versorgungskettenausprägungen
Quelle: Fraunhofer IEG

Handlungsempfehlungen zu den Wasserstoff-Verteiloptionen 2035

  • Das Wasserstoffnetz muss weiter ausgebaut werden. Dabei gilt es Speichermöglichkeiten in der Planung zu berücksichtigen.
  • Das bestehende Bahnstreckennetz muss erweitert und um neue Strecken ergänzt werden.
  • Die Wasserstoffimportstrategie sollte zeitnah publiziert werden.
  • In der Markthochlaufphase gilt es, Wasserstoffderivate zunächst stofflich und erst später als Wasserstoffträger zu nutzen.
  • Produktpipelines sollten langfristig eingesetzt werden, um die Verteilung von Wasserstoffderivaten zu unterstützen.
  • Nachhaltigkeitskriterien beim Import kohlenstoffhaltiger Wasserstoffderivate sollten über den Aufbau internationaler Zertifizierungssysteme garantiert werden.
  • Wasserstoff- und CO2-Infrastrukturen müssen gemeinsam geplant und unter Berücksichtigung beidseitiger Wechselwirkungen aufgebaut werden.

Literatur: www.acatech.de, wasserstoff-kompass.de, www.energiesysteme-zukunft.de
Spillmann, T.; Nolden, C.; Ragwitz, M.; Pieton, N.; Sander, P.; Rublack, L. (2024): Wasserstoff-Verteiloptionen 2035. Versorgungsmöglichkeiten von Verbrauchsstandorten in Deutschland mit importiertem Wasserstoff. Cottbus: Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG

AutorInnen: Iryna Nesterenko, Philipp Stöcker
Beide von acatech – Deutsche Akademie der Technikwissenschaften

Unterstützter Froststart bei -40 °C

Unterstützter Froststart bei -40 °C

Thermochemisches Reaktionssystem zur Erwärmung von BZ-Systemen

Der Froststart von Brennstoffzellen ist nach wie vor eine Herausforderung. Bei Temperaturen unter 0 °C sinkt nicht nur der Wirkungsgrad, auch Degradationsmechanismen, wie zum Beispiel die Eisbildung in den Membranen, reduzieren die Lebensdauer der Zellen erheblich. Um diese Degradation zu vermeiden, ist es nötig, ein Brennstoffzellensystem schnell und zuverlässig mit thermischer Energie zu versorgen, sobald die Temperatur unter dem Gefrierpunkt liegt [1].

Eine Aufheizung erfolgt in der Regel durch integrierte elektrische Heizelemente, die kaum zusätzliches Gewicht verursachen und flexibel einsetzbar sind. Allerdings benötigen sie zusätzliche elektrische Energie, die üblicherweise von einer Batterie bereitgestellt wird. Liegt die Umgebungstemperatur jedoch unter -20 °C, kann dies wiederum zu einer starken Degradation und/oder Funktionsunfähigkeit der Batterie führen. Bei Temperaturen zwischen -20 °C und 0 °C ist die katalytische Verbrennung von Wasserstoff eine weitere Möglichkeit, die benötigte Wärmeenergie bereitzustellen. Für Temperaturen unter -20 °C gibt es jedoch nur in begrenztem Maße geeignete Technologien.

Da während des Betriebs einer Brennstoffzelle ausreichend Abwärme vorhanden ist, könnte man sich fragen, ob nicht ein Teil dieser Energie gespeichert und beim nächsten Froststart bereitgestellt werden könnte, siehe Abb. 2. Diese Möglichkeit würde jedoch voraussetzten, dass es einen Speicher gibt, der zum einen thermische Energie quasi verlustfrei speichern kann – da der nächste Start erst Tage später sein könnte. Zum anderen muss das Speichersystem diese Energie bei Bedarf auch bei Temperaturen von unter -20 °C innerhalb von kurzer Zeit freisetzen können.

Metallhydrid-Wasserstoff-System


Abb. 1: Links: Reaktionsgleichung für die MH-H2-Reaktion. Rechts: Schema der Druck-Temperatur-Korrelation des reversiblen MH-H2-Reaktionssystems.
Metallhydride (MH) reagieren reversibel mit Wasserstoff (H2, s. Abb. 1, li.).

Bei diesem Reaktionssystem handelt es sich um ein sogenanntes Gas-Feststoff-Reaktionssystem, das aufgrund zweier Besonderheiten für die verlustfreie Langzeitspeicherung von thermischer Energie genutzt werden kann: Erstens ermöglicht die Gas-Feststoff-Reaktion eine einfache Trennung der Komponenten – Gas und Feststoff – und damit ihre langfristige und verlustfreie Speicherung. Zweitens ist die reversible Reaktion bei der Absorption exotherm und bei der Desorption von gasförmigem H2 endotherm.

Für den zugrunde liegenden Absorptionsprozess können schnelle Reaktionsgeschwindigkeiten von weniger als 100 Sekunden für eine vollständige Umsetzung, selbst bei Temperaturen unterhalb von
-20 °C, beobachtet werden. In Kombination mit den hohen Reaktionsenthalpien von -25 kJ/molH2 ist es daher möglich, thermische Energie mit einer sehr hohen spezifischen Wärmeleistung aus dem System freizusetzen (5 kW/kgMH).

Abbildung 1 zeigt rechts ein Schema der Temperatur-Druck-Korrelation, die das Reaktionssystem charakterisiert. Aufgrund dieser Korrelation ist es möglich, thermische Energie auf einem höheren Temperaturniveau freizusetzen als auf jenem, auf dem sie eingespeichert wurde – wenn H2 mit einem höheren Druck bereitgestellt wird, als er abgegeben wird. Dies kann beispielsweise dadurch realisiert werden, dass das Modul (TCU) zwischen der H2-Versorgung und dem H2-Verbraucherdruckniveau platziert wird.

Thermochemisches Reaktionssystem

Das thermochemische Reaktionssystem aus Metallhydriden (MH) und Wasserstoff erfüllt all diese Anforderungen (siehe [2]): Es kann große Mengen thermischer Energie über Tage bis Monate verlustfrei speichern und bei Bedarf die thermische Energie bei niedriger Umgebungstemperatur wieder abgeben. Darüber hinaus basiert es auf einer Reaktion mit Wasserstoff, der in jedem Brennstoffzellensystem zur Verfügung steht.


Abb. 2: Schema der Temperaturkontrolleinheit (TCU), die die „Abwärme“ der Brennstoffzelle während des Betriebs für das nächste Froststartereignis speichert.

Die gasseitige Integration eines solchen Metallhydrid-Wärmespeichersystems ist relativ einfach und kann zusätzlich von den verschiedenen vorhandenen Druckniveaus in einer Brennstoffzelleninfrastruktur profitieren. Denn diese unterschiedlichen Druckniveaus ermöglichen die Nutzung der sogenannten Temperatur-Druck-Korrelation von Metallhydrid-Systemen (s. Abb. 1, rechts): Immer dann, wenn Wasserstoff auf hohem Druck zugeführt wird, wird Wärme auf einem hohen Temperaturniveau freigesetzt. Bei der Abgabe von Wasserstoff auf einem niedrigeren Druckniveau kann hingegen Wärme niedriger Qualität gespeichert werden.

Abbildung 3 veranschaulicht das Grundkonzept einer solchen Metallhydrid-basierten Temperaturkontrolleinheit (Temperature Control Unit, TCU). Sobald das Ventil zwischen der H2-Zuleitung und der TCU geöffnet wird, wird Wasserstoff vom Metallhydrid auf dem hohen Druckniveau P1 absorbiert. Die thermische Energie wird auch bei Umgebungstemperaturen von T < -30 °C sofort freigesetzt, und die Brennstoffzelle (BZ) bzw. der H2-Verbraucher kann somit zügig auf mindestens +5 °C aufgeheizt werden. Dadurch werden die Degradationsmechanismen des Froststart-Szenarios vermieden. Sobald die Betriebstemperaturen der Brennstoffzelle mehr als 40 °C betragen, kann wiederum thermische Energie zum „Aufladen“ der TCU bereitgestellt werden, während der Wasserstoff auf niedrigem P2 an die BZ abgegeben wird. Der Wasserstoff wird in diesem System somit nicht verbraucht, sondern nur zur Speicherung der Wärmeenergie in den chemischen Bindungen zwischen H2 und MH verwendet.


Abb. 3: Schema der Integration der TCU in die H2-Infrastruktur. Links: Thermische Entladung, rechts: Thermische Beladung

Entwicklung eines neuartigen Moduls

Am Deutschen Zentrum für Luft- und Raumfahrt (DLR) wurde in den vergangenen Jahren ein neuartiges Modul für diese Anwendung entwickelt. Kernstück ist ein Reaktordesign, das in der Lage ist, hohe thermische Leistungen aus dem MH-Pulver auf ein externes Wärmeträgerfluid zu übertragen, wie zum Beispiel ein Standard-BZ-Kühlfluid. Dazu musste eine Geometrie für einen optimierten Wärme- und Gasübergang entwickelt werden, die weitere Randbedingungen wie die Dichtheit gegenüber H2 sowie das Pulverhandling für den Füllvorgang des Materials berücksichtigt.

Das Design basiert auf drei Rohren mit Durchmessern von 15 mm in einem Bündel mit einer Länge von 250 mm (s. Abb. 4). Im Inneren werden ~ 306 g des MH-Materials als Pulver eingefüllt. Die Betriebsbedingungen sind auf eine maximale Betriebstemperatur von 100 °C und auf einen maximalen Druck von 12 bar eingestellt.


Abb. 4: Bild und Schema des Kernreaktordesigns der TCU. Grün steht für H2, Orange-Rot für das reagierende MH-Pulver und Blau für die Wärmeträgerflüssigkeit.

Um ein System mit einem geringen Gewicht zu realisieren, wurde das Rohrbündeldesign auf der Grundlage additiver Fertigungsverfahren unter Verwendung der Aluminiumlegierung AlSi10 entwickelt. Im Druckverfahren wurden Rippen an der inneren und Nadeln an der äußeren Wärmeübertragungsfläche für einen verbesserten Wärmeübertragungsprozess vom Pulver-MH (orange-rot) zur Wärmeträgerflüssigkeit (blau) integriert. Außerdem wurden in axialer Richtung Filterrohre für den verbesserten radialen Wasserstoffgastransport (grün) vorgesehen. Dadurch konnte ein Design mit einem Verhältnis von Masse des Reaktors zu Masse des Metallhydrids von mReaktor / mMH = 0,97 < 1 realisiert werden. Dies liegt weit unter den herkömmlichen Designs, die üblicherweise Verhältnisse von > 2 aufweisen.

Unter Verwendung dieses Designs wurde eine kleine Serie von zwölf Reaktoren hergestellt und von Industriepartnern befüllt. Die ersten Berst-, Brand- und Falltests wurden erfolgreich durchgeführt.


Abb. 5: TCU mit Oberflächenaufnahme durch eine Thermografiekamera für den Ausgangszustand bei -20 °C und den aktivierten Zustand bei 8 bar

Abb. 5 zeigt Oberflächenaufnahmen des TCU mit einer Thermografiekamera für ein Experiment zum Zeitpunkt des Starts bei -20 °C sowie im aktivierten Zustand, nachdem ein H2-Druck von 8 bar angelegt wurde.

Das Modul hat seine Anwendbarkeit bereits in verschiedenen Untersuchungen bewiesen. So wurde es erfolgreich in ein System mit einem von DLR-TT konzipierten Brennstoffzellenstapel integriert (s. Abb. 6), der im Rahmen des FCCP-Projekts in verschiedene Lastenpedelecs eingebaut wurde. Basierend auf dieser Integration wurde die Anwendbarkeit als thermischer Booster für einen Kaltstart ab -20 °C mit über 2 kW/kgMH als Stand-alone-Einheit nachgewiesen [3]. Weiterhin wurde nachgewiesen, dass die Integration in das Brennstoffzellensystem einen positiven Einfluss auf die Performance ab -7 °C hat. Es wurde ein Temperaturanstieg auf +5 °C in weniger als 40 s gezeigt sowie eine deutlich reduzierte Eisbildung abgeleitet [4].


Abb. 6: Bild eines Brennstoffzellensystems mit integrierter TCU (unten, rechts), siehe [4]

Leistungs-Performance bei -40 °C

Wie bereits erwähnt, gibt es für Temperaturen über -20 °C alternative Heiztechnologien, die nur geringes Zusatzgewicht verursachen (z. B. elektrische Heizungen). Für Temperaturen unter -20 °C gibt es jedoch nur wenige eigenständige Heizungsoptionen. Ein geeignetes Modul könnte somit Brennstoffzellen oder anderen H2-Technologien mit Froststartanforderungen zu einem Durchbruch verhelfen.

Das entwickelte Modul wurde daher kürzlich in einen angepassten Laboraufbau integriert und getestet. Der Aufbau ist in der Lage, Temperaturen von -40 °C im Wärmeträgerfluid zu realisieren und Wasserstoff bei den erforderlichen Drücken von 4 bis 8 bar bereitzustellen. Für die Auswertung der Experimente konnte der H2-Massenstrom und damit die Gesamtmasse des dem Modul zugeführten Wasserstoffs gemessen werden. Außerdem konnte die auf das Wasser-Glykol-Gemisch übertragene Wärmeleistung durch Messung des Flüssigkeitsdurchflusses sowie der Ein- und Austrittstemperaturen bestimmt werden. Die Experimente wurden bei 10, 0, -10, -20, -30 und -40 °C und einem H2-Druck von 8 bar mit einem maximalen Wasserstoffdurchsatz von 50 NLmin-1 durchgeführt.

Eine Zusammenfassung der in der Flüssigkeit gemessenen spezifischen Wärmeleistung in kW/kgMH für verschiedene Einlasstemperaturen von bis zu -40 °C ist in der Grafik in Abbildung 7 dargestellt. Offensichtlich wird die thermische Energie für alle Anfangstemperaturen sofort nach dem Öffnen des Ventils bei t = 10 s freigesetzt. Dies zeigt, dass es auch bei -40 °C keine wesentliche Begrenzung der Reaktionsgeschwindigkeit dieser chemischen Reaktion gibt.

Nach etwa 20 s wird bei der spezifischen Wärmeleistung ein Spitzenwert von ~ 3 kWh/kgMH erreicht. Dieses Maximum ist für alle Anfangstemperaturen identisch und kann auf den maximalen Wasserstoffdurchsatz von 50 NLmin-1, der dem System zugeführt werden kann, zurückgeführt werden. Eine Aufhebung dieser Begrenzung könnte somit noch höhere thermische Leistungen erzielen.


Abb. 7: Spezifische thermische Leistung (links) und freigesetzte spezifische thermische Energie (rechts) für Experimente bei 8 bar H2 und Anfangstemperaturen von bis zu -40 °C

Nach etwa 100 s ist die gesamte im Metallhydrid gespeicherte Wärmeenergie freigesetzt, wie die auf der rechten Achse des Diagramms in Abbildung 7 angegebene spezifische Wärmeenergie zeigt. Mit den vorliegenden Experimenten konnte eine Entladerate oder auch C-Rate des Moduls von ~ 50 h-1 – selbst bei Starttemperaturen von -40 °C – nachgewiesen werden.

Vielseitige Anwendbarkeit des Systems

Das entwickelte TCU-Modul hat somit seine Anwendbarkeit für H2-Systeme bei Froststart bis -40 °C unter Beweis gestellt. Es ist darüber hinaus nicht auf die Kombination mit einer Brennstoffzelle beschränkt, sondern kann auch für andere Systeme verwendet werden, die Wasserstoff verbrauchen oder Wasserstoff in stationären oder mobilen Anwendungen benötigen. Sobald es in ein System integriert ist, ist zudem die Anzahl der TCU-Betriebsereignisse nicht auf Anfangstemperaturen unter -20 °C beschränkt, sondern es können Startvorgänge bei jeder Anfangstemperatur unterhalb der Betriebstemperatur unterstützt werden. Des Weiteren ist das integrierte Modul auch in der Lage, Temperaturspitzen während des Betriebs zu reduzieren. Somit kann das TCU als multifunktionales Modul die Flexibilität und Leistungsfähigkeit des gesamten Wärmemanagements eines H2-Systems erhöhen.

Da das System auf der Speicherung thermischer Energie basiert, ist es offensichtlich, dass die erforderliche Masse und die Materialkosten linear mit der Menge der thermischen Energie (190 kJ/kgMH) ansteigen. Es liegt auf der Hand, dass der Vorteil des Moduls, keine zusätzliche Energie für den Heizvorgang zu verbrauchen, den Nachteil des zusätzlichen Gewichts nur dann überwiegt, wenn das Modul so oft wie möglich verwendet wird. Daher ist die spezifische Dimensionierung und Integration des Systems von entscheidender Bedeutung für die Effizienz des Gesamtsystems. Dies könnte durch intelligente Anfahrstrategien erreicht werden, beispielsweise indem ausreichend Energie für einen Teil des Brennstoffzellensystems, die Batterie, kritische Ventile oder andere wichtige Systemkomponenten bereitgestellt wird.

An diesem Vorhaben beteiligt sind das Unternehmen Tecnodelta, das für die Befüllung, Versiegelung und Aktivierung des Materials in den Reaktoren zuständig ist, sowie die Firma 3D-Laserdruck, die für die Herstellung der Reaktoren mittels additiver Fertigung verantwortlich ist.

Literatur

[1] Liu P, Xu S. A progress review on heating methods and influence factors of cold start for automotive PEMFC system. SAE international, 2020, http://dx.doi.org/10.4271/2020-01-0852.

[2] Kölbig et al., Review on thermal applications for metal hydrides in fuel cell vehicles: Operation modes, recent developments and crucial design aspects, RSER, 2022, https://doi.org/10.1016/j.rser.2022.112385

[3] Bürger et al., Lightweight reactor design by additive manufacturing for preheating applications using metal hydrides, Int J. Hydrogen Energy, 2021, https://doi.org/10.1016/j.ijhydene.2021.06.091

[4] Melnik et al., Energy efficient cold start of a Polymer Electrolyte Membrane Fuel Cell coupled to a thermochemical metal hydride preheater, Applied Energy, 2024, https://doi.org/10.1016/j.apenergy.2023.122585

Autorin: Dr.-Ing. Inga Bürger, DLR Institute of Engineering Thermodynamics, Stuttgart
Alina Keller, Christian Brack, Hanna Lösch, Andreas Weigl, Dr.-Ing. Marc Linder